IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 7235-7260

On the elastic behavior of syntactic foams

Lorenzo Bardella, Francesco Genna *

Department of Civil Engineering, University of Brescia, Via Branze, 38 I-25123 Brescia, Italy
Received 11 September 1999; in revised form 17 May 2000

Abstract

This work concerns composite materials called “syntactic foams”, i.e., materials made by a polymeric matrix filled
with hollow solid inclusions. Explicit formulae for the homogenized values of the elastic moduli of these materials are
derived, by means of the physical model and the corresponding elastic solution used by Hervé and Pellegrini [Hervé, E.,
Pellegrini, O., 1995. Archives Mechanics. 47 (2), 223-246.]. The morphologically representative patterns theory of
Bornert et al. [Bornert, M., Stolz, C., Zaoui, A., 1996. Journal of the Mechanics and Physics of Solids 44, 307-331.] is
used to take into account both the influence of the filler gradation and the presence of ‘“‘unwanted” voids in the matrix,
factors that are shown to be important in characterizing the mechanical behavior of syntactic foams. Comparisons with
both experimental and numerical results show that the techniques used are capable of predicting, with good accuracy,
the elastic moduli of real syntactic foams, i.e., those arising from an actual production process. © 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Syntactic foams are particulate composites obtained by filling a polymeric matrix with hollow solid
inclusions, most often approximately or exactly spherically shaped. Syntactic foams are preferred to
standard foams (containing voids only) when high specific mechanical properties are required, rather than
just low density.

Typical applications of such composites range from aerospace plug manufacturing to ablative heat
shields for re-entry vehicles, underwater buoyancy aids and, more recently, structural components such as
hulls and bulkheads of ships and submarines. In these last cases, syntactic foams have been recently em-
ployed also as the core material of sandwiches (Bardella and Genna, 2000). These applications often exploit
several features typical of syntactic foams, beside the high specific mechanical properties, such as the low
dielectric constant, the good ablation behavior, the good match to acoustic impedance of water (for sonar
applications), and the good thermal and water insulation properties.
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The computation of the elastic properties of syntactic foams can be tackled by means of homogenization
techniques. However, the use of standard methods is somewhat made difficult by the presence of a void
phase, which may cause some classical techniques to furnish zero bounds and that causes a poor behavior
of methods which cannot properly take into account the connectedness of the matrix, a crucial ingredient if
a void phase is present.

We have been able to find four methods proposed in the literature to deal with the computation of the
effective elastic moduli of syntactic foams. The simplest one is that of Nielsen and Landel (1994), who
suggest to first homogenize the inclusion alone, using, for the shear modulus, a very simple formula derived
by Nielsen, and then to choose from any of the standard methods available to homogenize particulate
composites. More refined approaches are proposed by Lee and Westmann (1970) and Huang and Gibson
(1993). The first one makes use of Hashin’s CSA technique (Hashin, 1962), modified to account for hollow
inclusions, thereby obtaining a single result for the homogenized bulk modulus, and bounds for the shear
modulus. The second one uses a similar approach, which requires the knowledge of elastic solutions for the
problem of a cube of finite size, containing a hollow sphere centered on its centroid. Both techniques,
however, produce rather inaccurate results, specially for high volume fractions of filler.

The fourth method is given by Hervé and Pellegrini (1995). Starting from a work by Christensen and Lo
(1979), who considered a material containing filled homogeneous spherical inclusions, and who computed
only a “self-consistent-scheme” estimate of the homogenized elastic moduli (Hill, 1965; Budiansky, 1965),
Hervé and Pellegrini (1995) studied the problem of a composite material made by n-layered isotropic
spherical inclusions, and, by exploiting the theory of the Morphologically Representative Patterns (MRP)
(Bornert et al., 1996), they were able to compute a complete set of estimates of the homogenized clas-
tic moduli. In this case, the used MRP is similar to the “composite sphere” of Hashin (1962), here de-
fined by an (n — 1)-layered sphere, included within a spherical shell of matrix, whose thickness is such that
the volume fraction of the composite sphere (an n-layered inclusion) is the same as that of the syntactic
foam.

Hervé and Pellegrini were able to find the complete elastic solution of the problem of such an MRP
embedded within an infinite medium made by an arbitrary elastic isotropic material. Starting from this
solution, they computed estimates of the elastic moduli of both standard foams (in which the MRP is a two-
layered inclusion — the void and the matrix) and syntactic foams, in which the MRP is a three-layered
inclusion.

When trying to apply the results of Hervé and Pellegrini (1995) to real syntactic foams, however, one
may encounter some difficulties. The first source of uncertainty is given by the presence of unwanted voids
in the composite, a consequence of the production modalities. This fact is quite important, and it is ad-
mittedly one of the sources of scatter in the experimental results reported by Huang and Gibson (1993), as
well as a possible source of discrepancy between theoretical estimates and experimental results. The second
one derives from the fact that quite often the filler particles exhibit a significant scatter in their effective
density, not taken into account by the solution of Hervé and Pellegrini. Even when the filler particles are
nominally identical to each other, such as, for instance, in the material studied by Huang and Gibson
(1993), such scatter, due to the production modalities of the particles, is not negligible. A final (and minor)
difficulty is given by the rather involved aspect of the formulae in the paper of Hervé and Pellegrini, which
are particularized only to the case of standard foams.

In this work, we give some explicit formulae for the estimates of the elastic moduli of syntactic foams,
and illustrate the results obtained by extending the theory of Hervé and Pellegrini (1995), for the three-
layered inclusion case, to account for the presence both of unwanted voids and a graded filler. The ex-
tension is again based on the MRP theory and consists of a superposition of multiple MRPs into the same
Representative Volume Element (RVE); the elastic solution required to compute all the relevant averages is
that found by Hervé and Pellegrini (1995), in which both matrix and inclusions are taken to be isotropic
linear elastic, and the interfaces between the phases are considered perfectly bonded. Such an extension has
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already been developed in some cases (e.g., Bornert et al., 1994) but, to the best of our knowledge, not for
syntactic foams.

In Section 2 the homogenization formulae will be illustrated, and some details enabling to use them will
be reported in Appendix A. Next, the analytical results will be compared both with the few experimental
results we have been able to find in the literature, and with the results of tests on several syntactic foams
studied both at the University of Brescia, by the authors, and at the Politecnico of Milano (Maier, 1998).
The analytical predictions will also be compared with the results of numerical simulations, performed on
unit cell models.

2. Homogenization of syntactic foams with graded filler and “‘unwanted” voids

Here we give the trace of the procedure followed to obtain the analytical estimates of the elastic moduli
of syntactic foams made by graded filler with possible unwanted voids. The basic theory is the same de-
scribed in detail in Hervé and Pellegrini (1995) which the reader is referred to for more details.

A four-phase model is considered (Fig. 1), made by a single composite sphere (Hashin, 1962) surrounded
by an infinite homogeneous medium of arbitrary elastic constants. The composite sphere is defined by an
inner hollow spherical shell, made by the filler material, surrounded by a shell of matrix material. The
thickness of the external shell is such that the cubic power of the ratio between the outer radius of the
inclusion, b, and the outer radius of the composite sphere, ¢, is equal to the volume fraction f of the filler of
the composite.

If the syntactic foam is treated as a macroscopically homogeneous and isotropic medium, we need to
estimate two elastic constants, the effective bulk modulus K, and the effective shear modulus Gj.

To compute estimates of the effective shear modulus we must start by solving the elastic problem defined
on the four-phase model of Fig. 1, applying a simple shear boundary condition at infinity. Using Love’s

WALL OF THE
INCLUSION

MATRIX

/ SURROUNDING
HOMOGENEOUS MEDIUM

Fig. 1. The four-phase model.
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results (Love, 1944) for the case of simple shear, the problem can be solved in terms of spherical solid
harmonics of integral degree 2 and —3 (Hashin, 1962). Since the results of the homogenization process are
the same if one applies stress or displacement boundary conditions, here we refer to displacement boundary
conditions only, applied at infinity on the four-phase model:

u? :E?/.xj, (1)

where x;, j = 1,...,3, are the cartesian coordinates of a reference frame with the origin in the center of the
composite sphere in the four-phase model, ” are the displacements prescribed at infinity and Eg represents
the homogeneous strain field applied to the boundary of the four-phase model.

Following Hashin’s procedure, we apply a simple shear strain condition, i.e.,

E), =E) =7#0, all other components Ej; = 0, (2)
which corresponds to the following choice of simple shear displacements:
Uy = xa, uy = pxi, uy =0, (3)

where 7 is a given arbitrary constant known term.

The solution of this problem, which can be found following the general path indicated by Hervé and
Pellegrini (1995), yields the strain field in the four phases of the model, sl(f), where the index { becomes v in
the inner void of the inclusion, i in the wall of the inclusion, m in the matrix shell, and s in the surrounding
medium.

We must now use this result within the context of an RVE. For a syntactic foam filled by spheres ex-
hibiting different wall thicknesses and including voids, we consider, as our RVE, a Composite Sphere
Assemblage made by N types of composite spheres, each characterized by a known ratio a;/b;,
A=1,...,N. The presence of voids is taken into account by simply considering a type of inclusion with wall
thickness b, — a; =0, i.e., a;/b, = 1. The RVE is therefore made up of N types of composite spheres that
have variable size and that fill the whole space; we assume that every composite sphere is such that the cubic
power of the ratio between the outer radius of the inclusion and the outer radius of the composite sphere is
equal to the volume fraction, f, of the filler in the syntactic foam. There are other ways to prescribe that the
volume fraction of the filler in such a model is equal to the volume fraction f of the studied composite.
Here, we have not pursued the analysis of this aspect in detail; this is another so far unexplored interesting
application of the extension to a multiple pattern RVE of the basic MRP theory.

For each composite sphere 4, we consider the four-phase model of Fig. 1, with the boundary conditions
at infinity described above, and compute the relevant elastic solution sﬁf)’z.

Following the path of reasoning of Zaoui (1997), we now prescribe that the applied strain field £}, at the
boundary of the RVE coincides with the volume average of the corresponding local fields in such an en-
semble of composite spheres, i.e.,

Ep» le/ /V812(xf)dV = (e12) (4)

(the symbol () indicates the volume average over the RVE, whose volume is V), i.e., by taking account of
the presence of N different composite spheres,

N
(o) = > fiE5>", (5)
=1

where the symbol f; indicates the fraction of the filler type 4 to the whole filler, and E(SS)’)‘ indicates the
volume average computed on the single composite sphere A.



L. Bardella, F. Genna | International Journal of Solids and Structures 38 (2001) 7235-7260 7239

By writing the average stress—strain relationship for the RVE,

2G5 (en2) = (t12), (6)
one can obtain the desired estimate for the homogenized shear modulus. In fact, the volume average of the
stress 7;, can be written, on the basis of the local strain fields, as

_2 ‘ 20y 0, (m),
(t12) —;/I/G(x,-)alz(x,-)dV—; [Z (/V_w G, alz(xl-)dV—i—/V(m) GV ep (x;) dV

=1
- i A
=23 (G070 + G, )
=1

where Ggf) indicates the shear modulus of the inclusion material in composite sphere 4, f, /fm) and f ;” indicate
the volume fraction of matrix and inclusion materials of composite sphere 4 respectively, and EE%M indicates
the volume average of the shear strain over layer { of composite sphere 4, i.e.,

¢ 1
=04 _ )
gy = 0 /VF@ en(x)dv. (8)

A

Here, we have used the symbol Gﬁn]) to indicate a different shear modulus of the matrix associated to each
different composite sphere 4. Although such distinction is unnecessary in a linear analysis, where the shear
modulus of the matrix is constant over the whole RVE, it becomes essential in a nonlinear analysis, subject
of work in progress.

Replacing results (7) and (5) into Eq. (6) one can thus obtain the desired estimate of the homogenized
shear modulus G§™:

Z; 1{ 1 312 JFGmfA "3(12”}
Z; 1f/?12 ’

Finally, recalling that, owing to the definitions,

A a;\’
7 p,sz(a)], (10)

est
G()

Eq. (9) can be rewritten as follows:

3

Zf{ - (3)
N

S

The volume averages over the RVE and over the single layers all contain the shear modulus G of the
arbitrary surrounding medium in the four-phase model of Fig. 1; therefore, one can obtain several estimates
of the homogenized shear modulus by choosing different values for G. The best choice is the Self-Con-
sistent one, in which G® = G&'; this makes Eq. (12) implicit in the unknown G&.

In Appendix A we summarize all the equations needed to compute G, and we also furnish a quadratic
equation whose solution gives the Self-Consistent estimate of the homogenized shear modulus in the basic
case of a single composite sphere (i.e., the case studied also by Hervé and Pellegrini for n = 3).

CEE O u—ﬁu“}
Gy = :
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The computation of the homogenized bulk modulus K§* follows exactly the same path, starting, how-
ever, from volumetric boundary conditions at infinity on the four-phase model of Fig. 1, i.e.,

E), =E}, =E3;=0+#0,  all other components Ej; = 0, (13)

where 0 is an arbitrary constant known term. By proceeding in the same way as for the shear modulus, one
thus arrives at the following expression of K™

N . a 3
SRV - (—)
=1 b),

N
—(CS),4
S
=1

- |

Kt 7 (14)

where ¢ is the volumetric strain. Again, in Appendix A, we give all the equations necessary to apply Eq.
(14) together with the result for the case of a single composite sphere, independent of the choice of the
surrounding medium and already reported explicitly by Lee and Westmann (1970).

Note that in both Egs. (12) and (14) both the shear and the bulk moduli of the infinite surrounding
medium appear in the averages of the local fields, which depend in any case on both moduli. Therefore, in
the Self-Consistent case, the computation of the homogenized moduli is coupled, except for the trivial case
of a single inclusion type (N = 1), when the computation of the bulk modulus is independent of the stiffness
of the surrounding medium, and, therefore, the computation of the shear modulus becomes uncoupled.

3. Comparison with reference experimental results

In this section we test expressions (12) and (14), in their Self-Consistent version, against experimental
results given in the paper of Huang and Gibson (1993).

These results are particularly interesting with respect to the problem of unwanted voids in the matrix,
present in the syntactic foam studied by Huang and Gibson. They do actually furnish values of the volume
fractions of such voids, thus enabling us to homogenize them together with the filler using the technique
described in Section 2. On the contrary, we have no information at all about the granulometry of their filler,
which will therefore be characterized by the average values of wall thickness only.

All the necessary data are taken from the microstructural characterization of dog-bone specimens given
by Huang and Gibson, shown in Table 1, where f is the volume fraction of the filler, v is the volume
fraction of the unwanted voids and m is the volume fraction of the matrix. Table 1 reports also the ex-
perimental values of the Young modulus obtained by uniaxial tension tests, together with the analytical
estimates computed using Egs. (12) and (14).

In Fig. 2 we have plotted the results of the homogenization method: the agreement with the experimental
data is extremely good from the qualitative viewpoint, and except for case D5, quite acceptable also from
the quantitative viewpoint. The maximum error between the predicted and experimental Young modulus
values is of about 16% (case D5 excluded).

These results indicate that the presence of unwanted voids in the matrix has a significant effect on the
overall elastic properties of the composite. The application of the same homogenization technique to the
same composite is performed also by Hervé and Pellegrini without taking into account the presence of un-
wanted voids. Huang and Gibson too compute the homogenized elastic moduli of their material by means of
their own homogenization method but again without properly taking the void phase into account; indeed,
to account for the unwanted voids, Huang and Gibson propose to compute the stiffness of a fictitious
matrix, weaker than the real one. Unfortunately, the use of this inconsistent sequential homogenization
cannot give assurance of obtaining good estimates of the effective moduli; indeed, the results of Huang and
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Table 1
Microstructural characterization of dog-bone specimens and experimental and analytical Young modulus (Huang and Gibson, 1993)
Specimen f1%] m [%] v [%] E [MPa] E [MPa] (12)—(14)
D, 0.00 100.00 0.00 4890 4890
D, 2.41 97.21 0.38 4770 4734
D5 5.17 92.79 2.04 4340 4451
D, 8.31 89.48 2.21 4370 4293
Ds 9.41 88.53 2.06 3300 4256
Dy 17.54 77.66 4.80 3330 3681
D, 17.19 74.07 8.74 3120 3390
Dy 18.45 71.19 10.36 2860 3220
Dy 24.51 65.62 9.87 2680 3027
Dy 27.17 59.61 13.22 2320 2697
Dy, 30.20 56.20 13.60 2290 2566
Dy, 35.33 46.97 17.70 2170 2136
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Fig. 2. Analytical and experimental results for the syntactic foam Polyester Resin + Hardener + 3M Glass Bubbles K1 of Huang and
Gibson (1993).

Gibson as well as those of Hervé and Pellegrini become rather poor for volume fractions of filler higher
than f = 0.08, when, as apparent from the data of Table 1, the unwanted void content becomes significant.
Hervé and Pellegrini attribute the discrepancy between their estimates and the experimental results to the
testing modalities (uniaxial tension tests), which, in their opinion, induce debonding between matrix and
filler and therefore weaken the composite. Although this effect might certainly arise (and is avoided by the
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experimental technique used by Hervé and Pellegrini), we feel that, at reasonably low values of loading, it
should be much less significant than the effect of the presence of voids in the matrix. Our computations do
indeed confirm this hypothesis.

4. Experimental results on syntactic foams and comparison with analytical estimates

We report here the results of experiments carried out at the Laboratory for Tests on Materials “Pietro
Pisa” of the Department of Civil Engineering, University of Brescia, on several syntactic foams. The results
refer to five types of syntactic foams, made by two different epoxy resins. Together with these data, ob-
tained by the authors, other results are reported on similar syntactic foams, tested at the Laboratory for
Tests on Structures of the Department of Structural Engineering, Politecnico of Milano (Maier, 1998).

Throughout this section, we will deal with fillers characterized by only the average values of wall
thickness and diameter, whereas we will consider, in several cases, composites including voids. The analysis
of a composite whose filler gradation is known will be done in the next section.

We summarize next the main characteristics of the basic “ingredients” of the five syntactic foams, and
report the results of the laboratory tests, together with the corresponding analytical predictions.

4.1. Syntactic foam type 1

e Epoxy resin DGEBA, produced by Dow Chemicals under the name DER 332, with hardener DDM
Fluka 32950. The basic properties of this resin, in the fully hardened state, are: Young modulus
E, = 2800 MPa, Poisson coefficient v, = 0.41, density p, = 1.18 g/cm?. These data have been obtained
by one of the authors, and are the average values of several experimental tests (Bardella, 1997);

e filler made by hollow glass microspheres, produced under the name ““Scotchlite™ Glass Bubbles™ by 3M
Italia; in this case, use is made of the spheres indicated with the name “K37”, with weight ratio of 0.25,
corresponding to a volume fraction f = 0.5153. The mechanical properties of the used glass are: Young
modulus £, = 70110 MPa; Poisson coefficient v, = 0.23. These values are not indicated in the data sheet
available from the producer (3M Italia, 1993), and have been taken from the quoted paper of Huang and
Gibson (1993), who apparently make use of microspheres of the same brand. However, there is a rather
strong source of uncertainty with respect to the data values for this glass. For instance, Huang and
Gibson indicate a density of their glass p, = 2.5 g/cm’, but in order to obtain internal consistency in
the data provided in 3M Italia (1993), we need to use p, = 2.6 g/cm®. This may indicate that also the
above-quoted values of the elastic moduli might be incorrect; we will comment on this later in this sec-
tion. The average diameter of spheres type K37 is 50 pm, and their average wall thickness is 1.28 um
(data given in 3M Italia, 1993).

This syntactic foam has been produced and tested in Brescia. The details of the production and testing
modalities (either uniaxial tension/compression or cyclic uniaxial loading) as well as of the equipment used
(which has also been used to test the following syntactic foam types 2-4) can be found in the work of
Bardella (1999).

It is quite important to note that the production modalities of this foam (resin and filler mixed “by
hand” in carefully checked weight ratios, and both mixing and curing done under strong vacuum), hereafter
denoted as “traditional”, allowed us to obtain a foam with no unwanted voids; this is confirmed by the
density measurements, always in agreement with the theoretical densities calculated from the component
weight data.

This first type of syntactic foam has been tested at only one volume fraction, f = 0.5153. This material
has been examined at the Scanning Electron Microscope, both before and after testing it, with the aim both



L. Bardella, F. Genna | International Journal of Solids and Structures 38 (2001) 7235-7260 7243

of better understanding its internal structure and of understanding its fracture modalities. The second
aspect is outside the scope of this work. The first one, however, deserves some comments.

The microstructure of this syntactic foam, that will be taken into account also to construct numerical
models, whose results are commented in Section 6, is shown in Figs. 3 and 4, obtained by means of the
Scanning Electron Microscope. Fig. 3 shows a polished section of an untested specimen; from our view-
point, it is important to observe that the inclusions are distributed more or less randomly without local
“lumps”. This gives ground to the essential assumption of statistical homogeneity of the composite.

Fig. 4 shows the fracture surface of a specimen; here, one can observe how, at rupture of the composite,
the hollow microspheres on the fracture surface are broken. This observation supports the other as-
sumption underlying all the theories supporting this work, i.e., that perfect bond exists between matrix and
filler. On the other side, the same observation contradicts a corresponding finding in the work by Hervé and
Pellegrini, who report that, in their syntactic foam, at rupture, all the microspheres are intact, suggesting
that detachment at the matrix—filler interface might be both a primary source of failure and an indication of
damage occurring in the early stages of mechanical tests. We can only attribute this difference to different
mechanical and/or geometrical characteristics of the materials used (indeed, the inclusions used by Hervé
and Pellegrini are much thicker than those used by us).

Table 2 shows experimental results obtained by the authors on this syntactic foam in terms of elastic
moduli both in uniaxial compression (subscript ¢) and uniaxial tension (subscript t).

The results indicate that the elastic properties of this material are practically deterministic, and that the
elastic behavior is practically symmetric in tension and compression, if one neglects a tendency to be slightly
stiffer in tension. The average values of the elastic moduli can be assumed to be E =~ 3500 MPa and
v = 0.335.

The predictions obtained by applying Eqs. (A.25) and (A.28) to this material are the following: E = 3300
MPa, v = 0.36. The Young modulus is underestimated by 6%, while the Poisson coefficient is overestimated
by the same amount. This performance can be considered acceptable, especially in the presence of several
sources of uncertainty on the basic data. For instance, as said before, we do not know the exact value of the
Young modulus of the glass used to produce the filler, and we have chosen the value suggested by Huang

Fig. 3. SEM image of a polished section of a syntactic foam.
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13k HO

Fig. 4. SEM image of the fracture surface of a syntactic foam.

Table 2

Experimental results for syntactic foam type 1 (Bardella, 1997)
Syntactic foam f E. [MPa] ve [-] E, [MPa] v [-] Test type Velocity [mm/min]
DGEBA+K37 0.5153 3440 0.337 Compression 0.5
DGEBA+K37 0.5153 3460 0.336 Compression 0.5
DGEBA+K37 0.5153 3470 0.331 Compression 0.5
DGEBA+K37 0.5153 3450 0.345 Compression 1.0
DGEBA+K37 0.5153 3530 0.333 Tension 0.2
DGEBA+K37 0.5153 3530 0.333 Tension 0.2
DGEBA+K37 0.5153 3480 3480 Cyclic -
DGEBA+K37 0.5153 3480 3530 Cyclic -

and Gibson, who seem to have used the same glass spheres. However, as said, their value of the glass
density does not agree with the data found in 3M Italia (1993), which suggests that our glass might be
different from theirs. If we use, for the Young modulus of glass, the value £, = 77500 MPa, as suggested in
Brandt (1995) for a low alkali glass, we find, for the composite, E = 3450 MPa, practically the exact result.

4.2. Syntactic foam type 2

e Epoxy resin DGEBA as before, with a different hardener (type Laromin-C252, produced by BASF), but
with the same elastic moduli;
¢ filler made by hollow glass microspheres type K37 as before with the same mechanical properties.

This foam differs from the first one because of the production modalities, hereafter indicated as “injection
technique”. Here, the resin is injected into a container filled with microspheres in such a way as to obtain
the highest possible volume fraction of filler. In this way, however, it is inevitable to introduce also un-
wanted voids in the foam. In this case, both the volume fraction f of the filler and the volume fraction of
these unwanted voids have been carefully measured by weighing the specimens, putting them into a muffle
furnace and then taking weight of the dry glass; when the injection technique is adopted, unlike the case
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Table 3

Experimental and analytical results for syntactic foam type 2
Syntactic foam f m v E. [MPa] v [-] E [MPa] (12)—(14) v (12)-(14)
DGEBA+K37 (silanized) 0.6058 0.3846 0.0096 3485 0.324 3333 0.347
DGEBA+K37 0.5835 0.3778 0.0387 3215 0.329 3128 0.341

with the traditional technique (i.e., the one used to produce the syntactic foam type 1), the exact weight
fractions of microspheres and resin are unknown: this is the reason why one needs to burn the resin into a
muffle furnace.

Table 3 shows both the experimental results obtained for this foam, and the theoretical predictions,
obtained using Egs. (12) and (14) considering N = 2 (i.e., two different composite spheres: 2 = 1 corre-
sponds to the actual filler type K37, and 1 = 2 corresponds to the voids). The symbols f, m and v refer to
the same volume fractions already described in the previous section with reference to Huang and Gibson’s
foams.

Here, the analytical predictions of Young modulus underestimate the experimental ones roughly by 4%,
a reasonably good result, considering the already mentioned sources of uncertainty on the initial data.

It is interesting to note that the first specimen was produced employing silanized microspheres; the filler
can be silanized (i.e., subjected to a surface treatment with chemical agents (Tempesti, 1998)) to allow the
improvement of the adhesion with the matrix. As one can see in Table 3, this technique, still under study,
allows to produce a material with a void content v lower than that observable in the specimen produced
with regular filler; it is then likely that the silanization helps also in reducing the content of unwanted voids,
producing then a stiffer specimen, beside improving the ultimate behavior. Indeed, it is our opinion that
most of the unwanted voids are entrapped at the interface between matrix and filler, i.e., where the resin,
because of its viscosity, cannot fill all the spaces left between adjacent microspheres, interstices that are too
narrow when the maximum volume fraction of filler is the goal, as in the case of the injection technique.
Further, this fact can be indirectly proved in another way: current research on the nonlinear behavior of
syntactic foams shows, by means of finite element simulations, that the uniaxial behavior of some types of
syntactic foams, experimentally found to be weaker in compression than in tension, can be ascribed to the
buckling of the hollow microspheres that are not completely surrounded by the matrix, i.e., those inclusions
which are partially surrounded by unwanted voids.

4.3. Syntactic foam type 3

e Epoxy resin SP Ampreg 20™, produced by SP Systems, Montecatini Advanced Materials, with hardener
“UltraSlow Hardener”, produced by SP Systems, Montecatini Advanced Materials. The material prop-
erties of this epoxy resin are E; = 3700 MPa, v, = 0.4 (these data have been also measured in our labo-
ratory by means of uniaxial tension or torsion tests); density p, = 1.15 g/cm?;

o the same microspheres described for the syntactic foam types 1 and 2, again of the type K37, with var-
ious volume fractions and granulometries.

This syntactic foam has been prepared in Brescia, and tested both in Brescia and in Milano. Its production
modalities have been similar to those used for foam type 2, i.e., injection with no control both on the
volume fraction of the filler and on the presence of unwanted voids. In this case, unfortunately, we did not
measure the unwanted voids content. Therefore, the volume fractions used to obtain the analytical pre-
dictions are only theoretical, since they are based on the final density of the foam and the assumption of
absence of unwanted voids. Of course, these volume fractions are overestimates of the actual volume
fractions of filler, which, together with the neglect of the presence of unwanted voids, leads to a systematic
overestimate of the Young modulus in the analytical predictions, as shown in Table 4.
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Table 4
Experimental and analytical results for syntactic foam type 3
Syntactic foam 1 E. [MPa] ve [—] E [MPa] (A.25)-(A.28) v (A.25)- Test location
(A.28)

SP+K37 0.665 3452 0.311 3889 0.332 Brescia
SP+K37 0.647 3465 0.320 3884 0.332 Brescia
SP+K37 0.659 3535 0.322 3887 0.332 Brescia
SP+K37 0.659 3455 0.319 3887 0.332 Brescia
SP+K37 0.678 3150 3893 0.33 Milano
SP-++K37 sifted

(32<P<45) 0.585 3826 0.309 4395 0.344 Brescia
SP+K37 sifted

(32<P<45) 0.601 3847 0.305 4416 0.342 Brescia
SP+K37 sifted

(32<P<45) 0.623 3700 4446 0.340 Milano
SP+K37 sifted

(45<P<63) 0.704 2900 2999 0.321 Milano
SP+K37 sifted

(63 < P<90) 0.626 3075 0.294 3740 0.335 Brescia
SP+K37 sifted

(63 < P<90) 0.665 2942 0.269 3742 0.330 Brescia
SP+K37 sifted

(63 < P<90) 0.633 3153 0.314 3740 0.334 Brescia

The results are divided into four rows. The first one refers to tests done both at Brescia and at Milano
(Maier, 1998) on a syntactic foam made with K37 spheres as furnished by the producer, in the quoted
volume fractions. Here the symbol f* indicates that, as said, the volume fractions are derived from the
wrong assumption of absence of unwanted voids.

The specimens tested in Milano are significantly less stiff than those tested by us in Brescia, even at
comparable volume fractions. This indicates that the specimens tested in Milano contain more unwanted
voids than those tested in Brescia. The theoretical predictions, as expected, are in excess up to 19% in the
case of the material tested in Milano, and up to about +9% in the case of the tests done in Brescia.

This tendency of the theoretical predictions to overestimate the stiffness of the material is maintained
throughout the cases reported in Table 4. The last three rows of this table refer to syntactic foams produced
by the inclusion of microspheres taken from the K37 batch but sifted in order to obtain a controlled
granulometry. The results refer to three growing diameter sizes: 32 < @ <45, 45< @ <63 and 63 <
® <90 pm, where @ indicates the diameter of one inclusion. The theoretical results, for all these cases, are
always better when the volume fractions are smaller; for instance, for the case with f* = 0.585 and
32 < @ <45 pum, the estimates have an error of +15%, whereas the tests done in Milano on the composite
with the same granulometry, but with /* = 0.623, find the analytical predictions to be in error of +20%.
Again, this is a result of the uncertainty about the unwanted voids content, which increases when f*
increases. All the analytical results, however, are reasonable approximations of the experimental ones.

4.4. Syntactic foam type 4
e Epoxy resin SP Ampreg 20™ with the same hardener as in foam type 3 with the same mechanical prop-

erties;
e same glassy hollow microspheres as in the preceding foams (type K37).
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Table 5

Experimental and analytical results for syntactic foam type 4
Syntactic foam f m v E. [MPa] ve [-] E [MPa] (12)-(14) v (12)-(14)
SP+K37 + voids 0.493 0.472 0.035 3324 0.344 3576 0.342
SP+K37 + voids 0.493 0.471 0.036 3339 0.336 3568 0.342
SP+K37 + voids 0.492 0.470 0.038 3340 0.339 3553 0.342
SP+K37 + voids 0.496 0.474 0.030 3399 0.333 3614 0.343
SP+K37 + voids 0.445 0.520 0.035 3411 0.344 3565 0.348
SP+K37 + voids 0.447 0.522 0.031 3392 0.343 3595 0.348
SP+K37 + voids 0.442 0.517 0.041 3358 0.344 3520 0.346
SP+K37 + voids 0.447 0.522 0.031 3389 3595 0.348
SP+K37 + voids 0.289 0.646 0.065 3309 0.363 3314 0.357
SP+K37 + voids 0.291 0.649 0.060 3341 0.362 3349 0.358
SP+K37 + voids 0.393 0.564 0.043 3407 0.349 3494 0.351
SP+K37 + voids 0.395 0.567 0.038 3477 0.349 3531 0.352
SP+K37 + voids 0.400 0.573 0.027 3426 0.345 3613 0.354
SP+K37 + voids 0.398 0.571 0.031 3424 0.350 3582 0.354

This foam, similar to the preceding foam type 3, has been produced by means of the traditional technique,
and therefore the unwanted void content has been easily measured. The relevant results, both experimental
and analytical, are summarized in Table 5.

The analytical results seem quite accurate for small volume fractions, and tend to lose some accuracy
only for f > 0.45. In any case, the maximum errors are of about +7%, an acceptable result anyway.

4.5. Syntactic foam type 5

e Same resin and hardener as for material types 3 and 4;

e again, “Scotchlite™ Glass Bubbles” produced by 3M Italia, but here of the type K1, with two different
volume fractions. The spheres type K1 have an average diameter of 70 pm and an average wall thickness
of 0.58 um; they are thinner and lighter than the spheres type K37 used in all the previous foams.

This type of syntactic foam, tested only at the Politecnico of Milano, using machines and measurement
techniques similar to those used by the authors to test the previous ones, contains unwanted voids in known
volume fraction.

The relevant results, both experimental and analytical, are summarized in Table 6, where the experi-
mental results are the average values of several tests done at the Politecnico of Milano (Maier, 1998).

The analytical results overestimate the experimental ones by 16% in the first case, and by 8% in the
second. It is difficult to precisely catch the source of these errors, scattered among different reasons. One
possible explanation, however, lies in the brittleness of the very thin K1 spheres, broken in non-negligible
percentage during the production process of the material. The real syntactic foam, in this case, is obviously

Table 6

Experimental and analytical results for syntactic foam type 5
Syntactic foam f m v E. [MPa] ve [-] E [MPa] (12)-(14) v (12)—~(14)
SP+K1
with voids 0.509 0.410 0.081 1610 0.347 1873 0.323
SP+K1

with voids 0.523 0.421 0.056 1835 0.322 1971 0.325
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rather softer than what appears to the analytical model. This observation helps to explain also part of the
error, illustrated in Fig. 2, arising when applying the homogenization technique to the foam of Huang and
Gibson. Their foam makes use of spheres type K1 too, and therefore, in their case also, one should expect
the analytical predictions to overestimate experimental results. More details about all the laboratory tests
summarized here can be found in the work of Bardella (1999).

5. Influence of the variation of thickness of the inclusions

As already mentioned, and as visible also in Fig. 3, the ratio a/b, between the inner and the outer radius
of the used microspheres, in reality, at least for this type of filler (glassy microspheres type K37 — see
Section 4) can hardly be considered as constant, equal to an average value.

In order to evaluate the scatter of the ratios a/b for the filler used in the syntactic foams types 1-4,
described in Section 4, we have sifted the K37 spheres using five sifts, thus obtaining five “monodispersed”
sifted samples. We have then measured the density, p,, and the volume fraction, f;, of all the sifted samples,
A=1,...,5. The obtained results are shown in Table 7, in which the value of the ratio between the inner
and outer radius of any sifted sample of filler, a;/b;, is computed assuming that the density of the glass is
equal to 2.6 g/cm?.

Let us recall that the average diameter of the K37 spheres is @ = 50 um, and that the average ratio a/b is
0.9501 (data given in 3M Italy (1993)). Note that “average ratio a/b”’ means the ratio a/b of a fictitious
hollow sphere that has the same effective density of the real filler, which then has to be computed as

It is then apparent, from the results shown in Table 7, that there is some deviation, from the average values,
both for the wall thicknesses and especially for the diameters of the hollow spheres.

Fig. 5 compares the results of the homogenization method, obtained by considering only the average
values for the inclusions with those obtained considering N = 5 as shown in Table 7, for the case of syn-
tactic foam type 1, as described in Section 4, considering the full range of filler volume fractions and as-
suming the absence of unwanted voids. The results are shown as relative errors, for both the shear and the
bulk modulus, between the 5 and the 1 inclusion type solutions.

It is apparent that the differences between the values obtained using just the average values for the filler
wall thickness, and those obtained from the more accurate data of Table 7, are in this case relatively small.
The maximum difference is in fact of about 2%. This suggests that, for the morphology of these syntactic
foams, and considering the difficulty of obtaining accurate information about the real values of the
microsphere geometry, for all practical purposes it is sufficient to characterize the filler by means of its
average values of the ratio a/b.

Table 7

Wall thickness gradation for filler K37
A Diameter [pm] fi p; [g/em?)] a;/b;
1 @ =90 0.0906 0.2928 0.9610
2 63< <90 0.6481 0.3494 0.9530
3 45< P <63 0.0551 0.2552 0.9661
4 32< P45 0.1737 0.4594 0.9372
5 P <32 0.0325 0.6920 0.9020
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Fig. 5. Influence of filler gradation in epoxy resin DGEBA + hardener DDM + K37 microspheres: relative error between one sphere
MRP solutions and five sphere MRP solutions. Syntactic foam as foam type 1 in Section 4.

This conclusion, however, may not always be valid, depending upon the actual gradation of the filler. To
check this, we have considered a fictitious (and rather extreme) case, in which the filler has the following
distribution of ratios between the inner and the outer radii:

a,/b, =091, 0.92, 0.93, 0.94, 0.96, 0.97, 0.98, 0.99

each with equal volume fraction f; = 1/8; the average ratio a/b corresponding to this distribution is equal
to 0.9508, roughly equal to that of the K37 filler.

Fig. 6 shows the relative error between the predictions of the single inclusion model and those of the
multiple inclusion model for three types of matrix material: (i) an extremely stiff matrix (E™ =
280000 MPa), (ii) the DGEBA resin of syntactic foam types 1-4 of Section 4 (E™ = 2800 MPa) and (iii) an
extremely compliant matrix (E™ = 28 MPa). Fig. 6a refers to the shear modulus, and Fig. 6b refers to the
bulk modulus. In this way, we can appreciate the differences in the predictions of the two models for a range
of ratios between the stiffness of the matrix and that of the inclusions.

It is apparent that now the two models, based on two very different RVEs, may yield significantly
different results, with the “‘exact’ elastic moduli always lower than those based on the average values of the
wall thickness of the filler. Also, as obvious, the results of the two models tend to become coincident when
the stiffness of the matrix becomes much larger than that of the inclusions. These results are obtained
considering inclusions all made by the same material with a very large scatter in the wall thickness; of
course, the same technique might turn useful also to take account of the presence of inclusions made by
different materials.
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6. Comparison with the predictions of numerical simulations

The effectiveness of estimates (A.25) and (A.28) has finally been checked against the results given by
finite element simulations. The microstructure of the studied composite allows one to construct numerical
models in terms of so-called ““unit cells’, which require a minimum computational effort and can therefore
be used to test the validity of theoretical predictions over a wide range of base parameters.

Let us recall that, from the examination of the Scanning Electron Microscope images, shown and
commented briefly in Section 4, one can draw two important conclusions:

1. The assumption of statistical homogeneity can be taken as valid for the study of this material; moreover,
also the assumption of spatial periodicity of the microstructure may be invoked without introducing sub-
stantial errors.

2. The assumption of perfect bond between the two phases seems to be valid up to the rupture of the ma-
terial, and, therefore, more so in the linear elastic range. This might not hold both for very small volume
fractions, when a so-called “interphase” layer can appear around the outer surface of the inclusions,
owing to an imperfect reticulation of the matrix, and for very high volume fractions, where the lack
of matrix can lead to imperfect bonding. In both these extreme situations, one should expect experimen-
tal values of the elastic moduli systematically smaller than both the analytical and numerical predictions
if these are based — as they indeed usually are — on the perfect bonding assumption.

From the computational viewpoint, the first observation allows us to simulate the results of uniaxial
tests on cylindrical specimens by means of an axisymmetric unit cell, with appropriate boundary condi-
tions enforcing the periodicity of the microstructure. Such model is shown in Fig. 7, where the mesh
used to study one quarter of the unit cell, together with the deformed shape, is displayed. For a discussion
of the unit cell calculations, as well as the relevant boundary conditions, see, for instance, Tvergaard
(1982).

We have compared analytical with numerical results for a range of syntactic foams, similar to foam type
1 described in Section 4. The basic materials are the same; here we have extended the analysis to cover four
choices of microspheres, taken from the standard catalog given by the producer (3M Italia, 1993). Table 8
shows the average details of the considered inclusions, as given in 3M Italia (1993).

The results of our analyses are shown in Figs. 8 and 9 in terms of the Young modulus and Poisson
coefficient of the composite, respectively. Each figure includes four curves, computed analytically using
Egs. (A.25) and (A.28), on the basis of the moduli of the two phases and of the given average ratios a/b
for the four different sets of spheres considered; numerical results are superimposed as filled sym-
bols, corresponding to volume fractions of filler equal to 0.2, 0.3, 0.4, 0.5153 and 0.6. All the numeri-
cal results have been obtained using the finite element code ABAQUS (Hibbitt, Karlsson & Sorensen,
1998), employed in the linear elastic range and exploiting its “«MPC” and “xEQUATION” options,
which allow one to prescribe the necessary periodicity boundary conditions on the external sides of the
model.

The results in Fig. 8 confirm that the analytical estimates of the Young modulus predict with good
accuracy all the essential features of the dependency from both the volume fraction and the inclusion
geometry. The differences between the analytical and numerical results are always lower than about 7%, the
numerical results being stiffer than the analytical for the light spheres (K1) and more flexible for the heavy
spheres (K37).

It may be useful to recall that the axisymmetric unit cell, even in the case of real periodicity of micro-
structure, is an approximation of the three-dimensional solid because the unit cell model corresponds to a
circular cylinder with a spherical inclusion, and no packing of circular cylinders fills the space. Therefore,
the numerical results are in themselves affected by a slightly heavier approximation than that inherent into a
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Fig. 7. Mesh and deformed shape for a unit cell finite element model (sphere type K37, f = 0.30).

Table 8

Average details of the considered microspheres (3M Italia, 1993)
Sphere type Density [g/cm?] Median diameter [pum] Wall thickness [pum] a/b
K1 0.125 70.00 0.58 0.9836
K15 0.15 70.00 0.70 0.9802
S22 0.22 40.00 0.59 0.9709
K37 0.37 50.00 1.28 0.9501

finite element model. In consideration of this, the curves of Fig. 8 show an excellent agreement between
analytical and numerical results.

Things are essentially the same also in terms of Poisson coefficient (Fig. 9), where, now, the numerical
results underestimate the analytical ones for the light spheres and overestimate the analytical ones for the
heavy spheres, with differences again up to +7%. The largest differences between the numerical and ana-
lytical results appear for the K1 spheres, at high volume fractions. At these volume fractions (f = 0.6),
however, the spherical inclusions are close to their limit packing, and the numerical model inevitably in-
cludes several badly shaped elements; in this situation, a further loss of accuracy must therefore be expected
in the numerical results. On the other hand, the analytical results also tend to become more and more
inaccurate as the filler volume fraction becomes high. In any case, the results shown in Figs. 8 and 9 must be
considered satisfactory; for a better understanding of the situation, Fig. 10 shows the numerical and ana-
lytical predictions in terms of bulk and shear moduli for the K1 microspheres only. Even if this is the case
where the differences are the largest, the agreement is quite good.
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Fig. 8. Young modulus of syntactic foams: analytical vs numerical results.

7. Conclusions

We have illustrated the main features of the elastic behavior of special composite materials — syntactic
foams — by comparing experimental, numerical, and analytical results. These last are obtained by using a
homogenization technique particularly suited to deal with these materials, able to take account of both the
presence of a void phase outside the filler and the actual distribution of wall thickness of the filler particles.
The technique is based on analytical results obtained by Hervé and Pellegrini, and extends their homo-
genization technique using the MRP theory.

The comparison with both experimental and numerical results indicates that

o for the considered materials, the actual distribution of wall thickness of the microspheres seems to have
little influence on the overall properties of the syntactic foam;

e the presence of unwanted voids has a significant effect on the elastic moduli of the composite;

o the Self-Consistent estimate, based on the three-phase model of Christensen and Lo (1979) and relevant
extension by Hervé and Pellegrini (1995) gives results in good agreement with both experimental and nu-
merical results.

Most of the experimental results have been obtained by us; unfortunately, we have been able to find only
one work, in the literature, giving experimental results in a way complete enough to allow its proper use.
Experimental results on syntactic foams are reported also in the works of Hervé and Pellegrini (1995) and
Bunn and Mottram (1993). The paper by Hervé and Pellegrini, however, provides inconsistent information
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about the filler geometry, in that their indications about the filler density do not agree with their wall
thickness data, which makes it impossible to reconstruct both their experimental results and analytical
estimates.

The results of Bunn and Mottram (1993), concerning a syntactic foam made by phenolic microspheres,
would have been a very useful test for checking the accuracy of the method illustrated in this paper since the
elastic properties of the basic ingredients of that foam are very different from those tested by us. Unfor-
tunately, we could not find, in the work of Bunn and Mottram (1993), sufficient data for applying the
homogenization techniques.

The equations describing the homogenized values of the elastic moduli of the composite have a rather
involved aspect, but they are simple in essence, and therefore can be relatively easily implemented into a
computer code; the obtained results suggest that the developed method should provide an effective tool for
designing syntactic foams. Finally, it is worth remarking that the technique illustrated in this work applies
equally well to syntactic foams made by mixing fillers of different materials.

Work is in progress, experimental, theoretical and numerical, concerning the nonlinear behavior of these
materials. The relevant results will be published in forthcoming papers.
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Appendix A

Here we summarize both some details needed to practically use Egs. (12) and (14), and the relevant
results pertaining to the simple case of a single type of composite sphere. These last results have been
obtained for the first time by Hervé and Pellegrini (1995) for a much more general case than that of a
syntactic foam, and, therefore, their formulae are rather involved. For this reason, we feel it might be worth
reporting here explicit results for the syntactic foam case, the specific subject of this work.

First, we write down the system of equations corresponding to the boundary conditions of the four-
phase model of Fig. 1, i.e., vanishing of tractions at the inner surface of the inclusion (» = a), continuity of
both tractions and displacements at the two interfaces (r = » and » = ¢), and the applied strain field at
infinity.
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For the case of shear boundary conditions, the full set of equations, in the unknown coefficients 7, . . ., Iy,
M, ... .My, Si,...,Ss,1s as follows:

2 — 8L+ CV L+ ¢V, =0, (A.1)
40L + CV' L + ¢y = 0, (A2)
& B I & B &
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G™ (2m, — 8% M, + C Mg+c =G (25 -85, + P Ls,), (A.9)
C C C
5 | 5 P
G (40 LM+ M S M+ C "5 @ 4> = GY (40“—752 +cp “—554), (A.10)
C a C C
Si=7. (A.11)
In all the preceding equations G™, GY and G* indicate the shear moduli of the matrlx the inclusion and
the surrounding medium, respectively, and coefficients oc(f), ocg, CiO Cé >, 9 and C are defined as fol-
lows:
7 — 10v® 4 — SV‘V
© _ _ ©
R e R Rl g —2v
C(C’) - 14 + 4-\)(C> C(g) - 47 — 4\) — (7 — 10v<§))(2 + V(Q)
LT —407 o (7—40)(1 —20) ’
: 14+v® —24
€ _ ©) _
G =210 ST (A-12)

where index { becomes i, m and s in the various regions of the four-phase model.
For the case of volumetric boundary conditions, the set of equations, in the unknown coefficients Ji, J,,
P, P, T\, T», is as follows:

3k, — 4GV, =0, (A.13)
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3

i y, @ m m)p 4
3K, — 4G )JZE = 3K™P, — 4G >P25, (A.14)
& P
J]bJrJzﬁ:Pleerﬁ, (A.15)
e &
3KMP —4G™P — = 3K9T — 4GY T, (A.16)
c c
a’ a’
P10+P2§:T10+T2§, (A17)
T, = 0. (A.18)
These two systems of equations need to be solved for each type of composite sphere 4, for A=1,... N.

Finally, to evaluate the effective elastic moduli by Egs. (12) and (14), one needs to compute the following
averages:

12 5 2 az(c3 _ b3) ’
—{ 1 b —a
By =1+ (1 + gué)) 20— a3)13, (A.20)

1 I 1 a’

—(CS m m
59, (1 bidl >);M3+§u<;c—3M4, (A21)
& =3P, (A.22)
&) = 3J;, (A.23)
—(CS) a
8kk = 3(P1 +P2;> (A24)

In the case N = 1, one recovers the results of Hervé and Pellegrini for the situation they denote by n = 3
(i.e., a three-layered composite sphere, i.e., a syntactic foam). We write here the corresponding solution in a
somewhat simpler way. The bulk modulus estimate is unique (it does not depend on the stiffness of the
surrounding medium), and had already been obtained by Lee and Westmann (1970); the result is as follows:

b b}
8(14—3[3) —|—K<1—3>ﬁ
Kest_K(m) ¢ ¢
0 =

b3 b3 ) (A25)
8<1 —c3> + K<ﬁ+c3>
where
4Gm) 4GWH a3 4GH
'B:3K(m)’ 5:3K(m> < _E>’ K:3K(i)+§' (A.26)

The shear modulus general estimate (that depends on G® through all the unknown coefficients of system
(A.1)-(A.12)) is the following:
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3_b3 1 o S_bS ) b3_3 1 . b5_5
G(m)(c 3 (1 + 5% >> TMs) +G(‘)< Sy (1 +—a§>> 2—3a]3>
G c 5% a‘’c 3 5 a‘*c
0 = .

1 m 1 md’
M1+ 1—|——O{2 M3+ O(3C3M4

5 5
(A.27)

In the case of the Self-Consistent estimate, one should replace the unknown value G&* for G in system
(A.1)—(A.12), which makes the problem implicit and nonlinear. However, in the case of a single composite
sphere, it is possible to obtain a relatively simple quadratic equation whose solution gives directly the
desired result, G = G3¢:

Gy¢ Gy¢ BF, — FF,
(3 ) (EY + (o s e % ) (B ) BRI ans

whose coefficients Fy, F>, F;, Fy and H, are defined as follows. First define

21 b -)b3 3 4

(i N
C = < — 6v +35 (7+ 5V )b (A.29)
2 ) wat 94t
= Z(7 =5y 2 _4(1)____ A.
G 5(7 5v )a+(5 v )b2 S5 (A.30)
21 b b1 at
2T (7 a2y
G 5 (7—4v )a3 10(7—i—5 )b4’ (A.31)
2 @ 64t
=2(7 - N2 -2
Cy 5 (7-5"")=+2(1-2 )b2 + S h (A.32)
42 b2 @
4 : @ T2a
— (7 — 5y _ @ 1=«
Cs 5 (7—5v) —4(5 )b3 + 5 B (A.34)
21 b2 2 a5
2 . @ 24a
—Z(7 _ 5,0 (i) il
Cs 3 (7=5")+2(1 +v )b3 W (A.36)
Then,
b G(m)
D, = (Cs(C4 — )+ Cs(Cy — C3)) P 2W(C1 Cy — 0, Cy), (A.37)
(m) w2 O™ b
D2 = ((C2C5 — C1 C(,)(7 — 4y ) + 6(C3C6 - C4C5)V ); — GO (C1C4 — C2C3) ;, (A38)
4 (m) aS
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a? G(m>
Dy = ((C4C5 — C3C6)(5 — 4V<m)) + 2(C1C6 — CzCs)(l — 2V )) b2 + 4 (5 — v )
(13
X (C1C4 C2C3)b—
b Gm
Ds = (C1(Cs — Gy) + G5(Cy — C3)) TG (C1Cy — C,C3),
b G
D¢ = ((C2C7 — C1Cg)(7 — 4V(m)) + 6(C3Cg — C4C7)V(m)) §+W(7 + 2V(m>)(C1C4 — C2C3)
b2
>< ;7
a* Gm) @
D, = (C7(2C2 + 3C4) — C8(2C] + 3C3)) y — SW(C] Cy — C2C3)b—
a? Gm)
Dy = ((C4C7 — C3C5)(5 — 4™ +2(C1Cs — C2C7)(1 — 2v™ )) 2o (+ ym))
3
X (C1C4 C2C3)b3
then again,
DsDg — D,D 3 D,Ds — D\Dg a*
H =220 7016 gm & 3200 = PilPe @
D1D7 - D3D5 a a3 D]D7 - D3D5 C4
D3Dg — DyD 2 D4Ds — D Ds a*
H2:38 47 ¢ (54m)a+345 1361_7
D1D7 - D3D5 a C2 D1D7 - D3D5 (34
DsD¢ — D,D 3 D,Ds — D\Dg a*
Hy= 3607227 € (g gy € p2s TP e @
D1D7 - D3D5 a a3 D1D7 - D3D5 6‘4
DiDs — DyD7 ¢ @*> _D4Ds —DDs a*
H=———"" 4 2(l-2M)— 222 =
W, N, W, Wi Ut bRy o wey W, W
D3D6 - D2D7 C D2D5 - D]Dé 615
Hs=2—22 2714 gym— g2 —“107
> D1D7 — D3D5 o Cl2 D1D7 — D3D5 C'5 ’
D3Ds — DyD; a D4Ds — D\Dg @®
=8 45—y g T T
6 D1D7 — D3D5 ( v )03 D1D7 — D3D5 6‘5 ’
D3Dg — D>D; 2 DyDs—D\Dg &
Hy=——" "1 (7T+ 2! g ——
77 D\D; — D3Ds -0+ ) O DD, —DiDs &
D3Dg — DyD; a* _D,Ds —D\Dg &
Hy=—"—"—"*"""19(1 g2 =
8~ D\D; — D3Ds +2(1+v ) O DD, —DiDs &

and finally,
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(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)

(A.49)

(A.50)

(A.51)

(A.52)
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= (e ) A5
= (o s B HT ) A
= () g+ ) (859
Fi— ((2H1+3H3)%_3 7>‘Cl—: (A.56)

The significant root of Eq. (A.28) for G5€ is positive (i.e., greater than the value of the shear modulus of
the void), and lower than the highest value between the shear modulus of the matrix, G™), and the shear
modulus of the inclusion, GV
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